SUBSTITUTION RATES BETWEEN TECHNOLOGY, LAND AND LABOUR*

By
V.Y. Rao and
University of Queensland
Earl O. Heady
Iowa State University
(Received in December, 1968)

The least-cost method of increasing food supplies is a major. concern of most developing countries. In fact, this problem promises. to be one of the most urgent-problems of the world over the next. several decades. Many basic data are required in order that most efficient paths for increasing food output can be selected. There are numerous resource mixes which can be used to increase food output and it would be useful if the marginal rates of substitution relating. to all of these resources were known. For example, food supply can be increased by reclamation of more land, use of more fertilizer "on" given land or both. Many combinations of these alternatives exist. If we knew the marginal rates of substitution between land and fertilizer, or between other sets of technologies and resources, along with the costs of reclamation and fertilizer production and distribution, we could more nearly specify the optimal rates in increasing food supplies.

We provide some basic data on substitution rates of fertilizer for land in this paper. We consider the results to be of basic nature directed towards increasing knowledge and understanding of these phenomena. Of course, much additional data are necessary before quantitative results of this type can be employed in p'anning and policy. Even then, however, we believe our data begin to represent a small and useful plug in a general "gap of knowledge" which has so long existed. It leads the way to subsequent quantitative analysis and even now provides some basis for comparing investments in land reclamation and fertilizer production.

Fertilizer substitutes for land in the sense that a given product can be produced with less land and added fertilizer on the remaining

[^0]land Fertilizer also substitutes for labour since it boosts the yield but increases labour requirements by a very small absolute amount and as a minute fraction of (a) the total labour used per acre and (b) the relative increase in per acre yield. A given yield, under the use of more fertilizer, can therefore be obtained with less of both land and labour.

This paper presents empirical estimates of "gross" marginal rates of substitution between fertilizer in aggregate form (i.e., a given mix of nutrients), land and labour. These substitution rates are "gross" because the other minor capital items, as well as labour associated with fertilizer application per acre yield increase, are not included in this study. The estimates of substitution rates refer to particular types of land locations, climate and other environmental factors. With subsequent knowledge over wider experimental data, more information can be obtained for the potential substitution rates between wider ranges of resources. This knowledge is not only useful in developing countries where land is severely restricted but also in planning national policies for developed nations.

We present substitution rates derived from two different algebraic forms of production function. The quadratic and square-root models analysed are widely used in fertilizer production functions studies. The substitution rates derived from applying these two models fitted to experimental data are compared for estimational suitability and practical usefulness.

Derivation of Substitution Rates for Land

The method of deriving 'gross' marginal rates of substitution from experimental production functions has been explained by Heady (2) and has been used in other studies (3, 4). However, the procedure is reviewed briefly with modifications. A particular production function derived from a fixed land area with variable fertilizer inputs can be extended to reflect variable land quantities and substitution rates between land and fertilizer. While particular production function is related initially to fertilizer response, it can be suitably transformed, through some mathematical conversions, into one that includes land and has "constant returns to scale" for the two factors considered alone, so that doubling of both land and fertilizer will double output.

Quadratic Model: Equation 1, a quadratic model, is one of the two types of algebraic models examined :

$$
\begin{equation*}
Y=a+b N+c P-d N^{2}-e P^{2}+f N P \tag{1}
\end{equation*}
$$

22 Journal of the indiañ sóciêty ór agricultúural staṭistićs
N and P denote nitrogen and phosphorus in pounds per acre, respectively, and Y denotes output per acre. Many proportions or mixes of N and P can be derived from this equation. For example, a mix equal to the proportions of nutrients historically used or recommended at the location of the data can be used. In our study, however, the mix is varied between two values containing the recommended optimum ratio.

The conversion is as follows where r units of N are specified for each unit of P or $P=r N$ to produce one unit of F or fertilizer. With F, N and P all measured in pound units, the following relations are obvious:

$$
\begin{align*}
& F=(l+r) N \tag{2}\\
& N=\frac{F}{r+1} \tag{3}\\
& P=\frac{r F}{r+1} \tag{4}
\end{align*}
$$

Substituting these values of N and P in equation 1 and simplifying we obtain

$$
\begin{equation*}
Y=a+B F-C F^{2} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& B=\frac{b+c r}{r+1} \\
& C=\frac{d+e r^{2}-f r}{(r+1)}
\end{aligned}
$$

Equation 5 represents a 'per acre' production function where \dot{F} now is the fertilizer and Y is the output per acre. A more exact form of equation 5 can be written as

$$
\begin{equation*}
\frac{Y}{A}=a+B\left(\frac{F}{A}\right) \cdot \cdot C\left(\frac{F}{A}\right)^{2} \tag{6}
\end{equation*}
$$

Where A is land in acres. Here the output per acre $\left(\frac{Y}{A}\right)$ is a function of total fertilizer input per acre $\left(\frac{F}{A}\right)$. Multiplying both sides of equation 6 by A to allow land also to be a variable, we have

$$
\begin{equation*}
Y=a A+B F-C F^{2} A^{-1} \tag{7}
\end{equation*}
$$

Here the total output is expressed as a function of A input of land in acres and F input of fertilizer in pounds. The per acre production function with land fixed in equation 6 is thus transformed to the "long run" function as in (7) with total output Y as a function of variable land inputs A and total fertilizer inputs F. If the number of acres and the amount of fertilizer are increased by a given proportion in equation 7 , then the total output increases by the same proportion. This assumption of constant returns to scale arises from the procedure of estimating production functions under experimental conditions. Equation 7, embodies the assumption that each land input contains the "fixed" experimental conditions including soil types, rainfall, temperature, seed, etc. Similarly each fertilizer input is accompanied with appropriate labour and other inputs necessary for applying fertilizer. Under these conditions, constant returns to scale in equation 7 is a reasonable assumption.

Solving equation 7 , the isoquant equation is obtained as

$$
\begin{equation*}
A=\frac{(Y-B F)+\sqrt{(\overline{Y-B F})^{2}+4 a C F^{2}}}{2 a} \tag{8}
\end{equation*}
$$

The isoquant equation indicates the various combinations of land and fertilizer that will produce a given output Y. The negative ratio of partial derivatives with respect to F and A from equation 7 is as follows :

$$
\begin{equation*}
\frac{d A}{d F}=\frac{2 C A F-B A^{2}}{a A^{2}+C F^{2}} \tag{9}
\end{equation*}
$$

Equation 9 defines the gross marginal rate of substitution of fertilizer (F) for land (A). The term "gross" is used because, as indicated earlier, "fixed" inputs such as seed, plows, labour, etc., are associated with land A and "variable" in juts such as additional labour and capital required to apply fertilizer are included with F.

Square-root Model: With the same inputs as N and P, the square-root model considered is the second model examined :

$$
\begin{equation*}
Y=a_{1}+b_{1} N^{\frac{1}{2}}+c_{1} P^{\frac{1}{2}}-d_{1} N-e_{1} P+f_{1} N^{\frac{1}{2}} P^{\frac{1}{2}} \tag{10}
\end{equation*}
$$

Using the conversion $P=r N$ and substituting the values of N and P from equations 3 and 4 into equation 10 and simplifying, we abtain

$$
\begin{equation*}
Y=a_{1}+B_{1} F^{\frac{1}{2}}-C_{1} F \tag{l1}
\end{equation*}
$$

where.

$$
B_{1}=\frac{b_{1}+c_{1} r^{\frac{1}{2}}}{(r+1)^{\frac{1}{2}}} \text { and } C_{1}=\frac{d_{1}+e_{1} r-f_{1} r^{\frac{1}{2}}}{r+1}
$$

Introducing A, the land in acres into equation 11, we have :

$$
\begin{equation*}
Y=a_{1} A+B_{1} F^{\frac{1}{2}} \quad A^{\frac{1}{2}}-C_{1} F \tag{12}
\end{equation*}
$$

Under the conditions specified earlier, equation 12 also embodies 'constant returns to scale". Solving equation 12, the isoquant equation is :

$$
\begin{equation*}
A^{\frac{1}{2}}=\frac{-B_{1} F^{\frac{1}{2}}+\sqrt{B_{1}^{2} F+4 a_{1}\left(C_{1} F+\bar{Y}\right)}}{2 a_{1}} \tag{13}
\end{equation*}
$$

It indicates the various combinations of land and fertilizer to produce a given output. \boldsymbol{Y} under the square-root model. The gross marginal rate of substitution of fertilizer for land is now :

$$
\begin{equation*}
\frac{d A}{d F} \backsim \frac{2 C_{1} A^{\frac{1}{2}} F^{\frac{1}{2}}-B_{1} A}{2 a_{1} A^{\frac{1}{2}} F^{\frac{1}{2}}+B_{1} F} \tag{14}
\end{equation*}
$$

Substitution Rates for Labour

Since fertilizer is also a substitute for labour, the marginal rate of substitution of fertilizer for labour can be defined somewhat similarly For purposes of this paper, land and labour are considered as technical complements with k units of labour used for one acre of land. Under other formulations, land and labour are substitutes in food production. However, the increment of labour used in applying fertilizer and in harvesting the added yield is small compared to the total per acre labour requirements. Hence, land and labour are considered held in fixed proportions such that $L=k A$ or $A=k^{-1} L$ where L is 8 -hour days of labour used and k is 8 -inour days of labour required per acre. Bullock labour also is an important contributing factor in agricultural production of India. Hence, it is added to human labour in computing values for L and k and, k, the labour days required per acre, includes both human and bullock labour. Human labour is measured in 8 -hour days whereas bullock labour is measured in 8 -hour pair days as bullocks are used usually in pairs.

Quadratic Model: Substituting $A=k^{-1} L$ in equation 7, we obtain equation 15, where output is a function of the amount of labour and fertilizer used, based grossly on simple experiments

$$
\begin{equation*}
Y=a k^{-1} L+B F-C k L^{-1} F^{2} \tag{15}
\end{equation*}
$$

and B and C are as defined in equation 5 .
Solving equation 15 , the isoquant equation is:

$$
\begin{equation*}
L=\frac{(Y-B F) k+\sqrt{(Y-B F)^{2} k^{2}+4 a C F^{2} k^{2}}}{2 a} \tag{16}
\end{equation*}
$$

This isoquant equation indicates the various combinations of labour and fertilizer that will produce a given output Y (supposing land to vary directly with labour!. From equation 15, we derive

$$
\begin{equation*}
\frac{d L}{d F}=\frac{2 C k^{2} L F-B k L^{2}}{a l^{2}+C k^{2} F^{2}} \tag{17}
\end{equation*}
$$

Equation 17 defines the gross marginal rate of substitution of fertilizer (F) for labour (L).

Square-root Model: Substituting $A=k^{-1} L$ in equation 12 we obtain the production function, isoquant equation and marginal rate of substitution, respectively, in equations 18,19 and 20 where B_{1} and C_{1} are as defined in equation 11.

$$
\begin{align*}
Y & =a_{1} k^{-1} L+B_{1} F^{\frac{1}{2}} k^{-\frac{1}{2}} L^{\frac{1}{2}}-C_{1} F \tag{18}\\
L^{\frac{1}{2}} & =\frac{-B_{1} F^{\frac{1}{2}} k^{\frac{1}{2}}+\sqrt{B_{1}{ }^{2} F k+4 a_{1}\left(C_{1} F+Y\right) k}}{2 a_{1}} \tag{19}\\
\frac{d L}{d F} & =\frac{2 C_{1} k F^{\frac{1}{2}} L^{\frac{1}{2}}-B_{1} k^{\frac{1}{2}} L}{2 a_{1} F^{\frac{1}{2}} L^{\frac{1}{2}}+F k^{\frac{1}{2}}} \tag{20}
\end{align*}
$$

Empirical Estimates of Substitution of Fertilizer for Land

The substitution rates derived are not predictions of those which have existed in Indian agriculture. Instead, they represent substitution rates under the specific environmental conditions of the data. Thus they indicate a specific set of physical potentials. The sample of functions considered is not necessarily representative for the state concerned in respect to soils and similar phenomena. The functions are used because of their availability and because they satisfy certain economic criteria for which they were fitted. While the statistical data are entirely meaningful in deriving the production functions of the quadratic and square-root forms, the purpose here is not to predict for time and the nation but to indicate potential substitution rates under specific conditions.

All estimates are for paddy. Derivation of gross marginal rates of substitution are made for two locations: (1) Tirurkuppam, Madras
for the year 1948-49, and (2) Chandukuri, Madhya Pradesh for the year 1936-37. The basic production functions are reported by Abraham and Rao (1). However, some results are presented in the appendix to give the reader the useful background information.

For convenience, only four isoquants are considered for each function and location, all the isoquants representing a yield level obtainable on a single acre but not restricted to an acre as a fixed input magnitude. The isoquant levels are so chosen to represent a range of production, keeping in view the optimum values of outputs (appendix). Thus the isoquant levels selected are 10, 15, 20 and 25 maunds (1 maund $=82 \cdot 2857$ pounds) per acre of paddy. Also, the substitution rates are derived when r, the ratio of P to N takes values $0.5,1.0$ and 15 . Though r can take any positive finite value, these three values are selected for r in the light of information regarding the optimum fertilizer combinations given in the appendix.

The estimated quantities for isoquants and 'gross' marginal rates of substitution for fertilizer and land are given in Tables 1 and 2 for Tirurkuppam and Chandukuri, respectively. As expected, the substitution rates of fertilizer for land increase in absolute value with the higher yield isoquants for any value of r, the ratio of P to N. Also, for any selected isoquant level and for any given value of r, the marginal rates of substitution decrease as the fertilizer (F) rate increases. When no fertilizer is applied, the marginal rates of substitution are infinite for the square-root. Also, the substitution rates of fertilizer for land increase in absolute value with the higher yield isoquants for any ratio of P to N. Also for any selected isoquant level and for any given value of r, the marginal rates of substitution decrease as the fertilizer (F) rate increases.

Under the quadratic model when r is equal to unity, a 15 maunds output for Tirurkuppam (Table 1) location is obtained with $2 \cdot 06$ acres of land and no fertilizer, $1 \cdot 81$ acres of land and 10 pounds of fertilizer, $1 \cdot 58$ acres of land and 20 pounds of fertilizer, $1 \cdot 19$ acres of land and 40 pounds of fertilizer, etc. With the combination of 20 pounds of fertilizer and 1.58 acres of land for 15 maunds output, a pound of fertilizer substitutes for 0.0220 acres of land. Hence a ton of fertilizer nutrients similarly spread over more acres of land is estimated to substitute for 49.28 acres of land (i.e., 2240×0.0220). With 60 pounds of fertilizer and 0.94 acres of land to produce the same amount of paddy, a ton of fertilizer substitutes for 1994 acres
of land. With 60 pounds of fertilizer and $1 \cdot 49$ acres of land to produce 20 maunds of paddy, a ton of fertilizer substitutes for 32.92 acres of land.

When r is equal to 1.00 under the square-root model, 15 maunds of output for the same location is forthcoming with 1.73 acres of land and no fertilizer, 1.35 acres of land and 10 pounds of fertilizer, 1.22 acres of land and 20 pounds of fertilizer, etc. With the combination of 20 maunds of fertilizer and $1: 22$ acres of land for a 15 maunds output, a ton of fertilizer substitutes for $24 \cdot 64$ acres. With 60 pounds of fertilizer and 0.93 acres of land to produce the same amount of output, a ton of fertilizer substitutes for $11 \cdot 20$ acres of land. With 60 pounds of fertilizer 1.35 acres of land to produce 20 mainds of paddy, a ton of fertilizer substitutes for 13.89 acres of land.

For Chandukuri (Table 2) location when r is equal to $1 \cdot 00$ under the quadratic model, 20 pounds of fertilizer and $1 \cdot 05$ acres of land produce 15 maunds of paddy. Hence a ton of fertilizer substitutes for 41^{-22} acres of land. With 60 pounds of fertilizer and 0.96 acres of land to produce 20 maunds of paddy, a ton of fertilizer substitutes for $17 \cdot 25$ acres of land.

When r is equal to 100 under the square-root model, 20 pounds of fertilizer and 0.88 acres of land produce 15 maunds of paddy. Hence, a ton of fertilizer substitutes for 20.61 acres of land. With 60 pounds of fertilizer and 0.68 acres of land to produce 15 maunds of output, a ton of fertilizer substitutes for 6.7 acres of land. With 60 pounds of fertilizer and 0.97 acres of land to produce 20 maunds of paddy, a ton of fertilizer substitutes for $9 \cdot 41$ acres of land.

Obviously, the gross marginal rate of substitution of fertilizer nutrients for land varies with the soil type, rainfall, crop, climate and other environmental factors-as well as with the ratios in which fertilizer and land are combined under any unique combination of these factors. The rate at which fertilizer substitutes for land also varies with the level of fertilization of each acre of land.

The land-fertilizer isoquants for paddy derived from both models are illustrated in Figures 1 and 2 when $r=1$ for Tirurkuppam and Chandukuri locations, respectively. The slopes of these isoquants define the gross marginal rates of substitution between fertilizer and land. The slopes of the isoquants of the quadratic function decline

TABLE 2
Isoquants and "Gross" Marginal Rates of Substitution (MRS) of Fertilizer ($F=N+P$) for Land (A) - Chandukuri*

The $M R S$ is the marginal rate of substitution of fertilizer per acre when the combination of the the level in the F column to the left. column and the A colomn for a particular yield level.

TABLE 1
Isoquants and "Gross" Marginal Rates of Substitution (MRS) of Fertilizer ($F=N+P$) for Land (A) - Tirurkuppam"

* A refers to amount of land to produce the specified yield per acre when fertilizer is at the level in the F column to the left. The $M R S$ is the marginal rate of substitution of fertilizer per acre when the combination of the two inputs is that shown in the F column and the A column for a particular yield level.
more or less steadily as the fertilization rate increases. But the slopes of the isoquants of square-root function deciine very rapidly at lower rates of fertilization. As the fertilization rate is increased, the rate of decline is reduced. The isoquant lines for the square-root form are lower than those of quadratic form at lower fertilization rates Hence, at lower fertilization rates-these rates increase from 30 to 60 pounds per acre as the isoquant level increases from 10 to 25 maunds per acre of paddy-isoquant yields under the square-root model are obtained with less of land and less of labour than those require 1 under quadratic model. When the slopes of these isoquants are zero, it indicates that no land can be replaced by fertilizer.

For the isoquant of 20 maunds per acre when r is allowed to take three different values, the marginal rates of substitution for Tirurkuppam are illustrated in Figures 3 and 4 for quadratic and square-root models, respectively. For the quadratic model (Figure 3), at the lower rates of fertilization, the marginal rates of substitution of fertilizer for land increase in absolute value as the value of r increases. However, these substitution rates decrease as the value of r increases at higher levels of fertilization. As r increases from 0.50 to 1.50, the substitution rates increase as the fertilization rate increases up to 30 pounds per acre. But beyond 60 pounds of fertilization the rates decrease as the value of r increases. For the square-root model (Figure 4), the substitution rates are infinite when no fertilizer is applied. Up to 10 pounds of fertilization, these rates do not differ much as the value of r changes. But at higher rates of fertilization, the substitution rates decrease as the value of r increases. For any given isoquant, the differences in marginal rates of substitution for varying values of r are much greater for the quadratic function than the square-root function.

When $r=1$ and when the isoquant level is 20 maunds per acre, the marginal rates of substitution for both models are illustrated in Figures 5 and 6 for Tirurkuppam and Chandukuri, respectively. At two levels (one at high and the other at low) of fertilization, the substitution rates derived from both models are identical. At very low levels of fertilization, ie., at 10 pounds of fertilizer per acre or lower, the substitution rates derived from square-root model are extremely high and hence are not meaningful. Ocherwise, the substitution rates derived from the square-root form are generally lower than those derived form the quadratic form for relevant ranges of fertilizer application,

Substitution of Fertilizer for Labour

Marginal rates of substitution of fertilizer for labour are derived from previous equations and data. Here, labour is marginally associated with land, in the sense that if we replace an acre of land by fertilizing remaining acres at a higher level, we also displace the constant quantity of labour required to handle the "displaced" land. As a given output is produced by diverting some land from production and producing more on fewer acres at a higher yield, some of the displaced labour (attached to the displaced land) is offset by the added labour required to harvest and handle the higher yield on the remaining acres, as well as by some added labour for applying the fertilizer. However, under Indian farming conditions, the incremental labour to apply fertilizer and harvest the greater yield is very small to the total labour repuirements and hence may possibly be neglected in the aggregate importance. Or, one can recognize the substitution rates for labour presented here are slightly higher than the actual "net" rates.

Again, the rates of substitution of fertilizer for labour depend on environmental conditions at each location, as well as on the proportions in which labour and fertilizer are combined. These rates are calculated for the same isoquant levels and the same values of r that are used in the earlier section. However, the national average labour requirements per acre of paddy are not available. Panse and Bokil (5) estimated labour input quantities per hectare for selected crops and zones of the nation. The estimates used in this paper are the averages of three years $1954-55$ to $1: 56-57$. The estimates for Madras zone are used for Tirurkuppam. Converting the figures to a per acre basis for Madras, it is estimated that 109.3 eight-hour days of human labour and 55.8 eight-hour pairs days of bullock labour are needed for one acre of paddy. Hence the value of k for Tirurkuppam is taken at 165.1 eight-hour days which contains 66 per cent of human labour and $\vdots 4$ per cent of bullock labour. The estimates for Madhya Pradesh zone are talen for Chandukuri. Converting the figures to per acre basis, 368 eight-hour days of human labour and 8.9 eight-hour pair days of bullock labour are needed for the zone. Accordingly the value of k for Chandukuri is considered at 45.7 eight-hour days which includes 88 per cent of human labour and 20 per cent of bullock labour. Higher inputs of both human and bullock labour in Madras region are explained as a consequence of the use of lift irrigation in the region.

The substitution rates for labour are presented in Tables 3 and 4 for Tirurkuppam and Chandukuri locations, respectively. (Graphic

TABLE 3
Isoquants and "Gross" Marginal Rates of Substitution (MRS) of Fertilizer ($F=N+P$) for Labour (L) - Tirurkuppam"

${ }^{*} L$ refers to the amount of labour to produce the specified yield per acre when fertilizer is at the level in the F column to the left. The $M R S$ is the marginal rate of substitution of fertilizer per acre when the combination of the two inputs is that shown in the F column and 7 column for a particular yield level.

TABLE 4
Isoquants and "Gross" Marginal Rates of Substitution (MRS) of Fertilizer ($F=N+P$) for Ladour (L) - Chanduk

$r=\frac{P}{N}$	F lbs. per acre	QUADRATIC MODEL				SQUARE-ROOT MODEL			
		10 maunds	15 maunds	20 maunds	25 maunds	10 maunds	15 maunds	20 maunds	25 maunds
		$L \quad M R S$	$L \quad M R S$	$L \quad M R S$	$\bar{L} \quad M R \bar{S}$	$L \quad M R S$	L MRS	$L \quad M R S$	$L \quad \overline{M R S}$
$r=0.60$	0	$44.8-0.814$	$67.2-0.814$	$89.6-0.814$	$112.0-0.814$	43.2 ¢	64.8 -	86.4 -	108.1
	10	36.9-0.748	$59.2-0.774$	$81.6-0.786$	$103.9-0.792$	$299-0.572$	$48.0-0744$	$66.6-0.891$	$856-1.021$
	20	$30.0-0.634$	$51.7-0.716$	$73.9-0.748$	961-0.764	$25.6-0.352$	$42.3-0.470$	$59.8-0.572$	$77.7-0.662$
	40	$20.8-0.273$	$39.2-0.526$	$60.0-0.634$	$81.6-0.687$	$20.6-0.203$	$35.4-0.282$	$51.2-0.351$	$67.7-0.413$
	60	$18.1-0.034$	$31.2-0.273$	$48.9-0.463$	$689-0.572$	$17.4-0.141$	$30.9-0.203$	$45.5-0.257$	$60.9-0.306$
	80	-	$27.7-0.089$	$416-0.273$	$58.6-0.424$	$15.1-0.107$	$27.5-0.158$	$41.2-0.203$	$55.7-0.244$
	100			$37.7-0.125$	$520-0.273$	$13.4-0.085$	$24.9-0.128$	$37.7-0.167$	$51.5-0.203$
	120		-	$36.2-0.034$	$47.8-0.150$	$12.0-0.070$	$22.7-0.107$	$34.8-0.141$	$47.9-0.173$
$r=1: 00^{\prime}$	0	$448-1.038$	67.2-1.038	$89.6-1.038$	112.0-1.038	$43.2 \sim$	64.8 ¢	86.4∞	108.1 -
	10	$35.0-0.908$	$57.2-0.962$	$79.4-0.984$	$101.8-0.996$	$28.5-0.574$	$45.9-0.778$	$63.9-0.954$	$82.4-1.110$
	20	$27.0-0.666$	48.1-0.841	70.0-0 908	$92.1-0942$	$246-0.321$	40,4-0.456	$57.0-0.574$	$74.2-0.681$
	40	$19.6-0.119$	$34.9-0.456$	$54.0-0.666$	$74.8-0778$	$20.6-0.159$	$34.4-0.244$	$49.2-0.321$	$64.8-0.391$
	60	-	$29.5-0.119$	$43.8-0354$	$61.5-0.542$	18.4-0.698	$30.9-0,159$	$44.5-0.217$	$58.9-0.270$
	80		———	$39.3-0.119$	$53.1-0.297$	$17.1-0.066$	$28.6-0.114$	$41.2-0.159$	$54.7-0.203$
	100		———	-	$49.1-0.119$	$16.2-0.046$	$26.9-0.085$	$38.8-0.123$	$51.5-0.159$
	120			----	$47.9-0.013$	$15.5-0.034$	$25.6-0.066$	$36.9-0.098$	$49.0-0.129$
$r=1.50$	0	$448-1.172$	$67.2-1.172$	$89.6-1.172$	112.0-1.172	43.2 $\quad \infty$	$64.8 \quad \infty$	$86.4 \quad \infty$	108.1 ¢
	10	$33.9-0.973$	56.0-1.057	$78.2-1.091$	$100.5-1.110$	$28.0-0.558$	$45.1-0.776$	$62.8-0.966$	$80.0-1.134$
	20	$25.9-0.610$	$46.3-0.870$	$67.9-0.973$	89.8-1.026	$24.4-0290$	$39.8-0.432$	$561-0.558$	$72.9-0.671$
	40	$20.7-0.016$	$34.1-0.342$	$51.8-0.610$	$71.7-0772$	$21.2-0.125$	$34.5-0.211$	$48.9-0.290$	$64.0-0.363$
	60	$20.7-0.016$	$31.0-0.016$	$43.6-0.232$	59.5-0.444	$19.6-0.065$	$31.7-0.125$	$44.9-0.183$	$58.8-0.238$
	80			41.4-0.016	$53.5-0.175$	$18.9-0.034$	$30.0-0.080$	$42.3-0.125$	55.4 -0.169
	100				$51.7-0.016$	$18.5-0.016$	29.0 28.3	$\begin{array}{ll}40.5 & -0.089 \\ 39.3 & -0.065\end{array}$	$\begin{array}{ll}52.9 & -0.125 \\ 51.1 & -0.095\end{array}$
	120					18.3 -0.004	28.3-0.034		

${ }^{*} L$ refers to the amount of labour to produce the specified yield per acre when fertilizer is at the level in the F column to the left. The $M R S$ is the marginal rate of substitution of fertilizer per acre when the combination of the two inputs is that shown in the F column and L column for a particular yield level.
representation is not included since the labour isoquants have the $s_{a_{4}}$. configuration as those for land at the different locations and for the different equations.) When $r=1$ for Tirurkuppam (Table 3) uncei quadratic model, 15 maunds of output is forthcoming either with no fertilizer and 339.5 eight-hour days of labour or with 20 pounds of fertilizer and 261.6 days of labor or with 100 pounds of fertilizer and 130.9 days of labour. Hence with zero level of fertilizer, one pound of fertilizer substitutes for 4.10 days of labour. With 20 pounds of fertilizer, one pound of fertilizer substitutes for 3.64 days of labour. And with 100 pounds of fertilizer, one pound of fertilizer substitutes for 0.03 days of labour. Put on the basis of the equivalent of one ton of fertilizer, these values represent correspondingly the substitution of a ton of fertilizer for $9,184,8,154$, and 67 eight-hour days of total labour. The corresponding values derived from the square-root model are infinite, 3,9:4 and 1,149 eight-hour days Of these total labour days, 66 per cent account for human labour and the remaining for bullock labour.

Under quadratic model, with 20 pounds of fertilizer, 373.5 days of labour are required to produce 20 maunds of paddy. With 80 pounds of fertilizer 206.4 days of labour are required to produce the same output. The corresponding marginal rates of substitution for one pound of fertilizer are 3.79 and 1.47 days of labour, respectively. For square-root model, the corresponding substitution rates for one pound of fertilizer are $2 \cdot 15$ and 079 days of labour respectively.

For Chandukuri (Table 4) when $r=1$, under the quadratic model with 20 pounds of fertilizer, 48.1 days of labour are required to produce 15 maunds while 70.0 labour days are required to produce 20 maunds. The corresponding marginal rates of substitution are one pound of fertilizer for 0.84 days of labour in the former and 0.91 days of labour in the latter case. For the square-root model, the corresponding substitution rates are one pound of fertilizer for 0.46 days of labour and one pound of fertilizer for 0.57 days of labour, respectively.

As the input requirement of labour per acre is very high for Tirurkuppam, the substitution rates for labour are very high and appear less meaningful compared to those of Chandukuri.

Conclusions

While the data under the study are for experimental conditions and may somewhat overẹtimate the rate at which fertilizer substitutes
for land and labour on all land, the marginal replacement rates are obviously high. As one can expect that individual farmer does not buy more fertilizer and use less land and less labour. He purchases the fertilizer and uses it on the given land area. In the aggregate serse and over time, however, fertilizer does become a substitute for these two resources, since the given output can be produced with fewer acres and less labor.

The high substitution rates for land also indicate the potentialities for increasing agricultural production in India where the acreage is severely restricted, through fertilizer application. With sufficient quantities of fertilizer available to farmers, the agricultural production can be significantly increased. The high substitution rates for labour could mean to indicate that small amounts of fertilizer can substitute for many days of labour. With abundant and cheap labour in present Indian agriculture, there may be little urgency in substituting fertilizer for labour. But, with plenty of fertilizer available in the future and its price being relatively cheaper to the cost of labour, one can reasonably wish to substitute fertilizer for labour.

Most important, bowever, we see that fertilizer has a high marginal rate of substitution for land. The rate declines as fertilizer level is higher, but it will certainly be large for sometime at the rate of use characterizing India. In a rough way, we could specify the extent to which investment should be in land reclamation or fertilizer facilities and distribution. The criteria is one of equating the fertilizer land substitution rates with the relative costs of land development and fertilizer production. This analysis can be approached in a later paper.

The quadratic form appears to be preferable to square-root form for estimation purposes. At the currently low average level of fertilizer application in India, the square-root form estimates unrealistically high substitution rates. Generally, the substitution rates derived from the square-root form are higher than the corresponding ones derived from the quadratic model. But as the rate of fertilizer application increases, both forms give reasonably meaningful results.

REFERENCES

[^1]2. Heady, Earl O. Marginal rates of substitution between technology, land and labour. Journal of Farm Economics, $45:$ 137-195. 1963.
3. Heady, Earl O., J. T. Pesek and V. Y. Rao. Fertilizer production functions from experimental data uith associated supply and demand relationships. Iowa State University Agriculture Experiment Sta. Res. Bul. 543. March, 1966.
4. Heady, Earl O. and L. G. Tweeten. Resource demand and structure of the agricultural industry. Iowa State University Press, U. S. A. 1963.
5. Panse, V. G. and S. D. Bokil. Cost of cultivation of some Indian field crops. Indian Council of Agricultural Res. Technical Bulletin (Agriculture) No. 3. January, 1966.

Appendix

The basic functions upon which our data are based are shown below where Y refers to maunds per acre of paddy while N and P refer, respectively, to pounds per acre nitrogen and phosphorus. (Wherever available, standard errors of the estimates are presented in brackets.) In estimating the optimum doses of N and P, the prices of N and P of were taken as Re. 0.7701 and Re. 0.6278 per pound, respectively, and the price of paddy as Rs. 10 per maund.
Location: Tirurkuppam, Madras
Quadratic Model ($R^{2}=0.9524$):
$Y=7.29476+0.08675 N+0.27540 P-0.00057 N^{2}-0.00377 P^{2}+0.00152 N P$

$$
\left.\begin{array}{llll}
-0.08675 N
\end{array}+\underset{(0.0067)}{0.27540 P}-0.0383\right) \quad(0.00002) \quad(0.00003) \quad(0.00016)
$$

Square-root Model ($R^{2}=0.9649$):
$Y=8.65312+0.7645 N^{\frac{1}{2}}+1.17353 P^{\frac{1}{2}}+0.00420 N-0.13190 P+0.13932 N^{\frac{1}{2}} P^{\frac{1}{2}}$

$$
\begin{array}{lllll}
(0.2345) & (0.3448) & (0.0197) & (0.0425) & (0.0195)
\end{array}
$$

Location: Chandukuri, Madhya Pradesh
Quadratic Model ($R^{2}=0.9475$).
$Y \Rightarrow 10.20425+0.08210 N+0.38139 P-0.00088 N^{2}-0.0047 \sum P^{2}+0 . C 0167 N P$ Square-root Model ($R^{2}=0.9892$):
$Y=10.57172-0.00823 N^{\frac{1}{2}}+2.07 i 45 P^{\frac{1}{2}}+0.01830 N-0.17323 P+0.10669 N^{\frac{1}{2}} P^{\frac{1}{2}}$
Optimum Doses of N and P

Location	Quadratic model			Square-root model		
	Optimum Dose		Optimum Yield (Y) per acre	Optimum Dose		Optimum Yield (Y) per acre
	Pounds of N per acre	Pounds of P per acre.		Pourds of N per acre	Pounds of P per acre	
Tirurkuppam	63.27	41.02	19•41	26.86	23.71	$15 \cdot 27$
Chandukuri	41.94	40.98	22.68	24.01	3025	20.01

Fig. 1. Land-fertilizer isoquants for paddy when $N=P$ for Tirurkuppam.

Fig. 2. Land-fertilizer isoquants for paddy when $N=P$ for Chandukuri.

Fig. 3. Marginal rates of substitution of fertilizer (F) for land (A) for different values of r for the isoquant of 20 maunds per acre derived from quadratic model for Tirurkuppam.

Fig. 4. Marginal rates of substitution of fertilizer (F) for land (A) for different values of r for the isoquant of 20 maunds per acre derived from square root model for Tirurkuppam.

Fig. 5. Marginal rates of substitution of fertilizer (F) for land (A) for the isoquant of 20 maunds per acre derived from the two models when $N=P$ for Tirurkuppam.

Fig. 6. Marginal rates of substitution of fertilizer (F) for land (A) for the isoquant of 20 maunds per acre derived from the two models when $N=P$ for Chandukuri.

[^0]: *Journal paper J-5820 of the Iowa Agricultural and Home Economics Experiment Station, project 1328 .

[^1]: 1. Abraham, T. P. and V. Y. Rao. An investigation of functional models for fertilizer response surfaces. Journal of the Indian Society of Agricultural Statistics, 43:1:45-61. 1966.
